

HENRY C. THACHER, JR.  
Department of Chemistry  
Indiana University  
Bloomington, Ind.

THE BINAC

A product of the Eckert-Mauchly Computer Corp.

## BINAC STATISTICS

### Repetition Rate

*4,000,000 pulses per second.*

### Memory

*Mercury Delay Line  
512 "word" capacity  
(15,360 binary digits)*

### Operational Rates

|                            |                        |
|----------------------------|------------------------|
| <i>Addition.....</i>       | <i>3500 per second</i> |
| <i>Subtraction.....</i>    | <i>3500 per second</i> |
| <i>Multiplication.....</i> | <i>1000 per second</i> |
| <i>Division.....</i>       | <i>1000 per second</i> |

### Input to Computer

*From keyboard or magnetic tape.*

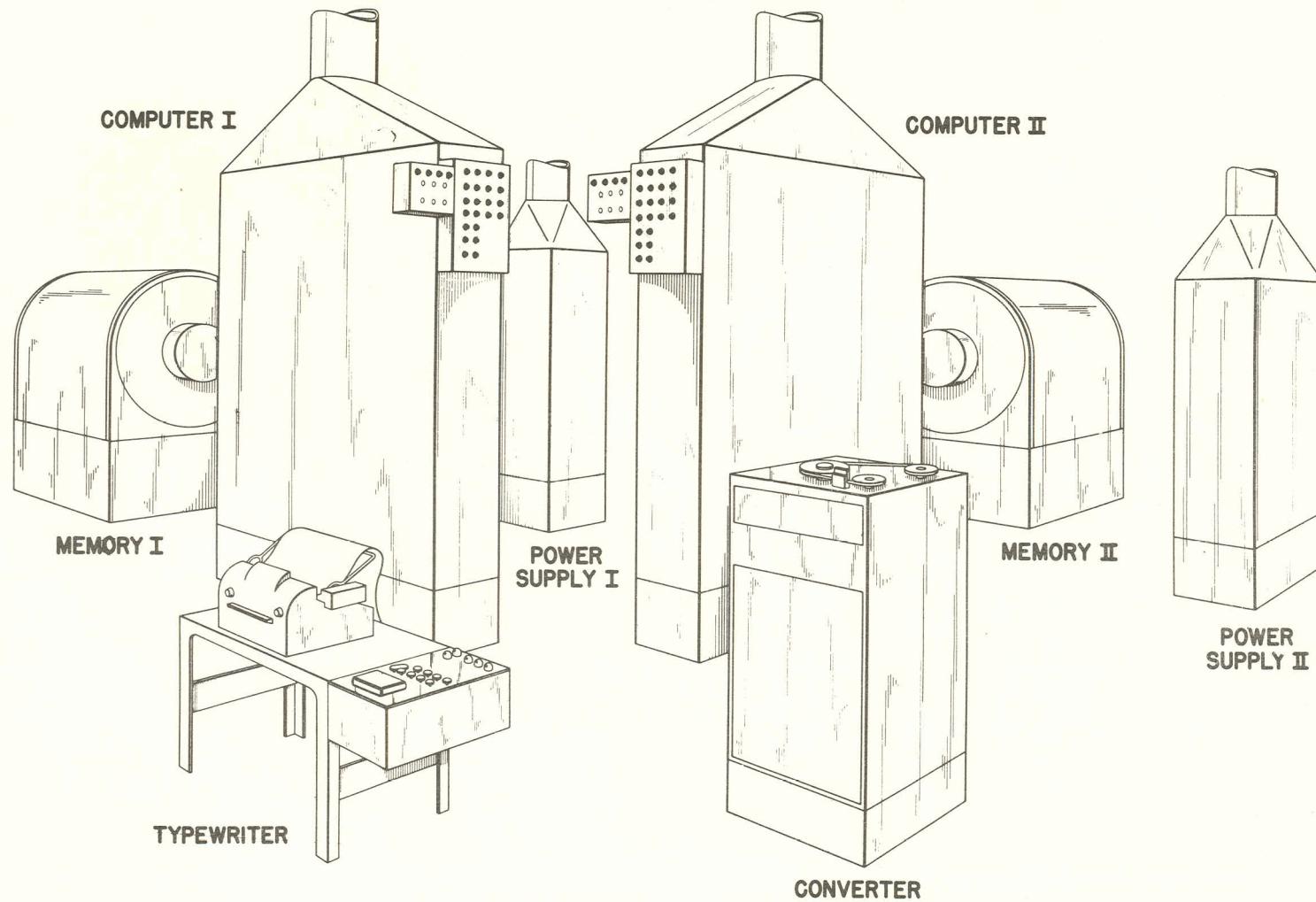
### Output from Computer

*To typewriter or magnetic tape.*

### Digital System

*Octal input and output; binary computation.*

### Checking System


*Synchronized duplicate arithmetic, control and memory organs  
check every operation.*

## The BINAC - General Characteristics

The BINAC has been designed and constructed by the Eckert-Mauchly Computer Corp. for the rapid solution of complex mathematical problems confronting the Research Staff of the Northrop Aircraft Company. That its completion is a new landmark in the history of computing instruments becomes apparent upon consideration of its salient characteristics:

1. The BINAC is an all-electronic device.
2. Owing to newly developed techniques, and despite its remarkable performance, the BINAC employs but a fraction of electronic equipment hitherto considered necessary. Less than 700 miniature tubes are contained in one computer and its associated memory.
3. The BINAC'S internal processing operations are prescribed by means of digitally coded instructions rather than manual "set-up" switches or plugboards.
4. At least 16 different types of instructions are at the disposal of the problem planner thus providing a high degree of flexibility in "programming".
5. Operational speeds are measured in millionths of a second.
6. Every step of each operation may be checked by an independent computer and memory system; disagreement of results at any point will instantly halt all further processing.
7. If, however, the computations to be executed are self-checking by nature, the twin computing and memory components may be used individually on two distinct problems.
8. With a minimum of equipment, the new mercury memory system provides storage for a large amount of data, any desired portion of which is readily available during computation.

# THE BINAC



## ELEMENTS OF THE BINAC SYSTEM

Please refer to the sketch of the complete BINAC system on the opposite page to identify the following components.

**NOTE:** All units, with the exception of the input-output devices, are in duplicate to provide complete checking of computations.

### Typewriter-Keyboard Unit

- A. **KEYBOARD:** A device for translating manual key strokes into "computer language". There are eight keys, representing the octal numbers zero thru seven, each of which when depressed, produces a unique set of binary pulse codes (3 pulse combination). Keyboard is used to introduce either the "program" or quantitative data into the computer and memory.
- B. **TYPEWRITER:** Printing unit only; contains type bars for numerals 0 through 7 only. This device is used to produce printed copy of:
  - 1. All input information typed by means of the adjacent keyboard. This printing operation is simultaneous with the operation of the keys.
  - 2. Information contained in designated portions of the memory which is to be read out; such information may be computed results, input data which is to be verified, intermediate results, etc.

### The Converter

- A. **TAPE READ-WRITE MECHANISM ON TOP OF STRUCTURE.**
  - 1. This is used to read intelligence into the computer from a previously prepared magnetic tape; such data will usually represent instructions to the computer for a given problem but may also, on occasion, include input data and constant values.
  - 2. This same device is used to record the contents of specified memory locations. Thus a new problem may be arranged for repetitive use by first inserting all necessary instructions into the memory through use of the keyboard, and then reading these same instructions from memory to tape for permanent preservation.
- B. **CONVERTER PROPER.**

This is a device which acts as an intermediary and synchronizer between the relatively slow operational rates of the manual keyboard, the typewriter printer, or the tape read-write mechanism and the high speed computer which is operating at a basic repetition rate of 4,000,000 pulses per second.

### Main Computing Instrument

This component not only performs the necessary labor required to execute the prescribed instructions but also acts as coordinator of the system. All arithmetic and control operations are carried out by this unit. Normally, it follows the operations called for by the "program" (instructions) but may also be operated manually by means of the control panel.

### Mercury Memory

The memory is of the acoustic delay line type and contains 18 channels within a tube of mercury. Sixteen of these are used for the storage of data, each having a capacity of 320 octal digits. Thus one complete memory is capable of holding 5,120 octal digits. The 17th channel maintains exact constant temperature throughout the mercury tank; the 18th is a spare.

## BINAC INSTRUCTIONS

A = ACCUMULATOR  
 L = L REGISTER-HOLDS MULTIPLICAND AND DIVISOR  
 ( ) = "CONTENTS OF". THUS (A) DESIGNATES CONTENTS OF ACCUMULATOR.  
 (m) = CONTENTS OF MEMORY LOCATION m (000-777)

| <u>Symbol</u> | <u>Numeric Equivalent</u> | <u>Arithmetic</u>                                                                                        | <u>Microseconds* per Operation</u> |
|---------------|---------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|
| A(m)          | 05(m)                     | ADD (m) TO (A), SUM IN A; $ (A) + (m)  < 1$ .                                                            | 285                                |
| S(m)          | 15(m)                     | SUBTRACT (m) FROM (A), DIFFERENCE IN A; $ (A) - (m)  < 1$ .                                              | 285                                |
| M(m)          | 10(m)                     | MULTIPLY (L) BY (m), PRODUCT IN A, ROUNDED TO 30 BINARY DIGITS.                                          | 654                                |
| D(m)          | 03(m)                     | DIVIDE (A) BY (m), QUOTIENT IN A, ROUNDED TO 30 BINARY DIGITS; $ (m)  >  (A) $ , CONTENTS OF L ARE LOST. | 633                                |
| F(m)          | 02(m)                     | ADD (L) TO (A), SUM IN A.                                                                                | 123                                |

### Data Handling

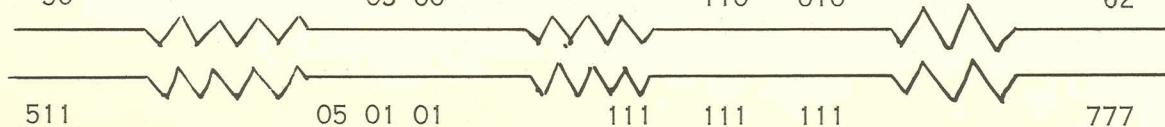
|      |       |                                                                                                                                      |     |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| C(m) | 04(m) | TRANSFER (A) TO m, CLEAR A.                                                                                                          | 285 |
| H(m) | 13(m) | TRANSFER (A) TO m, DO NOT CLEAR A.                                                                                                   | 285 |
| L(m) | 12(m) | CLEAR L, TRANSFER (m) TO L.                                                                                                          | 285 |
| K(m) | 11(m) | CLEAR L, TRANSFER (A) TO L, CLEAR A.                                                                                                 | 123 |
| +(m) | 22(m) | SHIFT ALL DIGITS OF (A) INCLUDING SIGN DIGIT ONE POSITION LEFT, INVOLVES LOSS OF SIGN DIGIT; EQUIVALENT TO 2(A).                     | 123 |
| -(m) | 23(m) | SHIFT ALL DIGITS OF (A) INCLUDING SIGN DIGIT ONE POSITION RIGHT, DUPLICATE SIGN DIGIT IN SIGN POSITION; EQUIVALENT TO $(A) \div 2$ . | 123 |

### Control

|      |       |                                                                                                                                                              |     |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SKIP | 25(m) | CONTINUE TO NEXT INSTRUCTION.                                                                                                                                | 123 |
| U(m) | 20(m) | OBTAIN NEXT PAIR OF INSTRUCTIONS FROM m, AND CONTINUE FROM THAT POINT.                                                                                       | 123 |
| T(m) | 14(m) | IF $(A) < 0$ , OBTAIN NEXT PAIR OF INSTRUCTIONS FROM m, AND CONTINUE FROM THAT POINT; CLEAR A. IF $(A) > 0$ , CONTINUE WITHOUT TRANSFER OF CONTROL; CLEAR A. | 123 |

BINAC Instructions (Cont'd)

| <u>Symbol</u> | <u>Numeric Equivalent</u> | <u>Control</u>                                                                                                                | <u>Microseconds* per Operation</u> |
|---------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| BP            | 24(m)                     | IF BREAK-POINT SWITCH IS SET, STOP. IF BREAK-POINT SWITCH IS NOT SET, CONTINUE TO NEXT INSTRUCTION AS UNDER SKIP INSTRUCTION. | 123                                |
| STOP          | 01(m)                     | STOP                                                                                                                          | ---                                |


\*1 Microsecond =  $\frac{1}{1,000,000}$  second.

The times shown are average times; individual operations may require more or less time depending on the actual digit values in multiplication and division, and depending on where a number is stored in the memory at the time it is to be used.

CONVERSION TABLE

0-50

| DECIMAL | CODED - DECIMAL | BINARY  | OCTAL |
|---------|-----------------|---------|-------|
| 0       | 00              | 000     | 0     |
| 1       | 01              | 001     | 1     |
| 2       | 02              | 010     | 2     |
| 3       | 03              | 011     | 3     |
| 4       | 04              | 100     | 4     |
| 5       | 05              | 101     | 5     |
| 6       | 06              | 110     | 6     |
| 7       | 07              | 111     | 7     |
| 8       | 10              | 001 000 | 10    |
| 9       | 11              | 001 001 | 11    |
| 10      | 01 00           | 001 010 | 12    |
| 11      | 01 01           | 001 011 | 13    |
| 12      | 01 02           | 001 100 | 14    |
| 13      | 01 03           | 001 101 | 15    |
| 14      | 01 04           | 001 110 | 16    |
| 15      | 01 05           | 001 111 | 17    |
| 16      | 01 06           | 010 000 | 20    |
| 17      | 01 07           | 010 001 | 21    |
| 18      | 01 10           | 010 010 | 22    |
| 19      | 01 11           | 010 011 | 23    |
| 20      | 02 00           | 010 100 | 24    |
| 21      | 02 01           | 010 101 | 25    |
| 22      | 02 02           | 010 110 | 26    |
| 23      | 02 03           | 010 111 | 27    |
| 24      | 02 04           | 011 000 | 30    |
| 25      | 02 05           | 011 001 | 31    |
| 26      | 02 06           | 011 010 | 32    |
| 27      | 02 07           | 011 011 | 33    |
| 28      | 02 10           | 011 100 | 34    |
| 29      | 02 11           | 011 101 | 35    |
| 30      | 03 00           | 011 110 | 36    |
| 31      | 03 01           | 011 111 | 37    |
| 32      | 03 02           | 100 000 | 40    |
| 33      | 03 03           | 100 001 | 41    |
| 34      | 03 04           | 100 010 | 42    |
| 35      | 03 05           | 100 011 | 43    |
| 36      | 03 06           | 100 100 | 44    |
| 37      | 03 07           | 100 101 | 45    |
| 38      | 03 10           | 100 110 | 46    |
| 39      | 03 11           | 100 111 | 47    |
| 40      | 04 00           | 101 000 | 50    |
| 41      | 04 01           | 101 001 | 51    |
| 42      | 04 02           | 101 010 | 52    |
| 43      | 04 03           | 101 011 | 53    |
| 44      | 04 04           | 101 100 | 54    |
| 45      | 04 05           | 101 101 | 55    |
| 46      | 04 06           | 101 110 | 56    |
| 47      | 04 07           | 101 111 | 57    |
| 48      | 04 10           | 110 000 | 60    |
| 49      | 04 11           | 110 001 | 61    |
| 50      | 05 00           | 110 010 | 62    |



511

05 01 01

111

111

111

777

102446200

